neuroscience
If we allow students to experience greater responsibility for their learning what may happen?
If a teacher allows students to seek answers for themselves how might these students develop? What mindsets might they evolve? If a teacher nurtures curiosity and provides students with interesting challenges and questions how might students brains evolve? How might a student's attitude and emotional state evolve? How do you promote emotional security and positive mindsets for your students? |
|
|
Provocation anyone? read this...
States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit
Matthias J. Gruber,1,* Bernard D. Gelman,1 and Charan Ranganath1,2
1Center for Neuroscience, University of California at Davis, Davis, CA 95618, USA
2Department of Psychology, University of California at Davis, Davis, CA 95616, USA
*Correspondence: [email protected]
This research by Gruber, Gelman and Ranganath investigates mechanisms by which intrinsic motivational states affect learning and memory. These findings are consistent with the idea that curiosity can influence memory consolidation of interesting material and incidental material encoded during high-curiosity states. We believe aspects of this research may be linked to and observed in Self Organised Learning Environments. The following extract explores this concept further.
People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day-delayed memory tests, participants showed improved memory for information that they were curious about and for incidental material learned during states of high curiosity.
Functional magnetic resonance imaging results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity to create more effective learning experiences.
For the full text of this article please follow this link - http://dx.doi.org/10.1016/j.neuron.2014.08.060
Matthias J. Gruber,1,* Bernard D. Gelman,1 and Charan Ranganath1,2
1Center for Neuroscience, University of California at Davis, Davis, CA 95618, USA
2Department of Psychology, University of California at Davis, Davis, CA 95616, USA
*Correspondence: [email protected]
This research by Gruber, Gelman and Ranganath investigates mechanisms by which intrinsic motivational states affect learning and memory. These findings are consistent with the idea that curiosity can influence memory consolidation of interesting material and incidental material encoded during high-curiosity states. We believe aspects of this research may be linked to and observed in Self Organised Learning Environments. The following extract explores this concept further.
People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day-delayed memory tests, participants showed improved memory for information that they were curious about and for incidental material learned during states of high curiosity.
Functional magnetic resonance imaging results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity to create more effective learning experiences.
For the full text of this article please follow this link - http://dx.doi.org/10.1016/j.neuron.2014.08.060
the importance of the emotional environment
still not convinced that S.O.L.E. just might be an option?
read on...
the neuroscience behind learning
The thoughts of Judy Willis resonate with our philosophy and prove to be excellent research on the brain, how it functions and provides an insight into the science of learning and its relevance to informing teaching and creating learning environments that nurture learning and learners. This article is both informative and motivational on many levels.
The realities of standardized tests and increasingly structured, if not synchronized, curriculum continue to build classroom stress levels. Neuro-imaging research reveals the disturbances in the brain's learning circuits and neuro-transmitters that accompany stressful learning environments.
The neuro-scientific research about learning has revealed the negative impact of stress and anxiety and the qualitative improvement of the brain circuitry involved in memory and executive function that accompanies positive motivation and engagement.
The Proven Effects of Positive Motivation
Thankfully, this information has led to the development of brain-compatible strategies to help students through the bleak terrain created by some of the current trends imposed by the Common Core State Standards and similar mandates. With brain-based teaching strategies that reduce classroom anxiety and increase student connection to their lessons, educators can help students learn more effectively.
In the past two decades, neuro-imaging and brain-mapping research have provided objective support to the student-centered educational model. This brain research demonstrates that superior learning takes place when classroom experiences are relevant to students' lives, interests, and experiences. Lessons can be stimulating and challenging without being intimidating, and the increasing curriculum requirements can be achieved without stress, anxiety, boredom, and alienation as the pervasive emotions of the school day.
During my 15 years of practicing adult and child neurology with neuro-imaging and brain mapping as part of my diagnostic tool kit, I worked with children and adults with brain function disorders, including learning differences. When I then returned to university to obtain my credential and Masters of Education degree, these familiar neuro-imaging tools had become available to education researchers. Their widespread use in schools and classrooms globally has yet to occur.
This brain research demonstrates that superior learning takes place when classroom experiences are motivating and engaging. Positive motivation impacts brain metabolism, conduction of nerve impulses through the memory areas, and the release of neurotransmitters that increase executive function and attention. Relevant lessons help students feel that they are partners in their education, and they are engaged and motivated.
We live in a stressful world and troubled times, and that is not supposed to be the way for children to grow up. Schools can be the safe haven where academic practices and classroom strategies provide children with emotional comfort and pleasure as well as knowledge. When teachers use strategies to reduce stress and build a positive emotional environment, students gain emotional resilience and learn more efficiently and at higher levels of cognition.
Neuro-imaging and EEG studies of electrical activity (EEG or brain waves) and metabolic activity (from specialized brain scans measuring glucose or oxygen use and blood flow) show the synchronization of brain activity as information passes from the sensory input processing areas of the somatosensory cortex to the reticular activating and limbic systems. For example, bursts of brain activity from the somatosensory cortex are followed milliseconds later by bursts of electrical activity in the hippocampus, amygdala, and then the other parts of the limbic system. This data from one of the most exciting areas of brain-based learning research gives us a way to see which techniques and strategies stimulate or impede communication between the parts of the brain when information is processed and stored. In other words, properly applied, we can identify and remove barriers to student understanding!
The amygdala is part of limbic system in the temporal lobe. It was first believed to function as a brain center for responding primarily to anxiety and fear. Indeed, when the amygdala senses threat, it becomes over-activated. In students, these neuro-imaging findings in the amygdala are seen with feelings of helplessness and anxiety.
When the amygdala is in this state of stress-induced over-activation, new sensory information cannot pass through it to access the memory and association circuits.
This is the actual neuro-imaging visualization of what has been called the affective filter by Stephen Krashen and others. This term describes an emotional state of stress in students during which they are not responsive to learning and storing new information. What is now evident on brain scans during times of stress is objective physical evidence of this affective filter. With such evidence-based research, the affective filter theories cannot be disparaged as "feel-good education" or an "excuse to coddle students" -- if students are stressed out, the information cannot get in.
This is a matter of science.
This affective state occurs when students feel alienated from their academic experience and anxious about their lack of understanding. Consider the example of the decodable "books" used in phonics-heavy reading instruction. These are not engaging and motivating. They are usually not relevant to the students' lives because their goal is to include words that can be decoded based on the lesson. Decodability is often at the expense of authentic meaning to the child. Reading becomes tedious and, for some children, confusing and anxiety-provoking. In this state, there is reduced passage of information through the neural pathways from the amygdala to higher cognitive centers of the brain, including the prefrontal cortex, where information is processed, associated, and stored for later retrieval and executive functioning.
Additional neuroimaging studies of the amygdala, hippocampus, and the rest of the limbic system, along with measurement of dopamine and other brain chemical transmitters during the learning process, reveal that students' comfort level has critical impact on information transmission and storage in the brain. The factors that have been found to affect this comfort level such as self-confidence, trust and positive feelings for teachers, and supportive classroom and school communities are directly related to the state of mind compatible with the most successful learning, remembering, and higher-order thinking.
The Power of Joyful Learning
The highest-level executive thinking, making connections, and "ah-ha" moments of insight and creative innovation are more likely to occur in an atmosphere of what Alfie Kohn calls exuberant discovery, where students of all ages retain that kindergarten enthusiasm of embracing each day with the joy of learning.
With current research and data in the field of neuroscience, we see growing opportunities to coordinate the design of curriculum, instruction, and assessment in ways that will reflect these incredible discoveries.
Joy and enthusiasm are absolutely essential for learning to happen -- literally, scientifically, as a matter of fact and research. Shouldn't it be our challenge and opportunity to design learning that embraces these ingredients?
Judy Willis contributed these thoughts in an article in Edutopia in July 2014.
The realities of standardized tests and increasingly structured, if not synchronized, curriculum continue to build classroom stress levels. Neuro-imaging research reveals the disturbances in the brain's learning circuits and neuro-transmitters that accompany stressful learning environments.
The neuro-scientific research about learning has revealed the negative impact of stress and anxiety and the qualitative improvement of the brain circuitry involved in memory and executive function that accompanies positive motivation and engagement.
The Proven Effects of Positive Motivation
Thankfully, this information has led to the development of brain-compatible strategies to help students through the bleak terrain created by some of the current trends imposed by the Common Core State Standards and similar mandates. With brain-based teaching strategies that reduce classroom anxiety and increase student connection to their lessons, educators can help students learn more effectively.
In the past two decades, neuro-imaging and brain-mapping research have provided objective support to the student-centered educational model. This brain research demonstrates that superior learning takes place when classroom experiences are relevant to students' lives, interests, and experiences. Lessons can be stimulating and challenging without being intimidating, and the increasing curriculum requirements can be achieved without stress, anxiety, boredom, and alienation as the pervasive emotions of the school day.
During my 15 years of practicing adult and child neurology with neuro-imaging and brain mapping as part of my diagnostic tool kit, I worked with children and adults with brain function disorders, including learning differences. When I then returned to university to obtain my credential and Masters of Education degree, these familiar neuro-imaging tools had become available to education researchers. Their widespread use in schools and classrooms globally has yet to occur.
This brain research demonstrates that superior learning takes place when classroom experiences are motivating and engaging. Positive motivation impacts brain metabolism, conduction of nerve impulses through the memory areas, and the release of neurotransmitters that increase executive function and attention. Relevant lessons help students feel that they are partners in their education, and they are engaged and motivated.
We live in a stressful world and troubled times, and that is not supposed to be the way for children to grow up. Schools can be the safe haven where academic practices and classroom strategies provide children with emotional comfort and pleasure as well as knowledge. When teachers use strategies to reduce stress and build a positive emotional environment, students gain emotional resilience and learn more efficiently and at higher levels of cognition.
Neuro-imaging and EEG studies of electrical activity (EEG or brain waves) and metabolic activity (from specialized brain scans measuring glucose or oxygen use and blood flow) show the synchronization of brain activity as information passes from the sensory input processing areas of the somatosensory cortex to the reticular activating and limbic systems. For example, bursts of brain activity from the somatosensory cortex are followed milliseconds later by bursts of electrical activity in the hippocampus, amygdala, and then the other parts of the limbic system. This data from one of the most exciting areas of brain-based learning research gives us a way to see which techniques and strategies stimulate or impede communication between the parts of the brain when information is processed and stored. In other words, properly applied, we can identify and remove barriers to student understanding!
The amygdala is part of limbic system in the temporal lobe. It was first believed to function as a brain center for responding primarily to anxiety and fear. Indeed, when the amygdala senses threat, it becomes over-activated. In students, these neuro-imaging findings in the amygdala are seen with feelings of helplessness and anxiety.
When the amygdala is in this state of stress-induced over-activation, new sensory information cannot pass through it to access the memory and association circuits.
This is the actual neuro-imaging visualization of what has been called the affective filter by Stephen Krashen and others. This term describes an emotional state of stress in students during which they are not responsive to learning and storing new information. What is now evident on brain scans during times of stress is objective physical evidence of this affective filter. With such evidence-based research, the affective filter theories cannot be disparaged as "feel-good education" or an "excuse to coddle students" -- if students are stressed out, the information cannot get in.
This is a matter of science.
This affective state occurs when students feel alienated from their academic experience and anxious about their lack of understanding. Consider the example of the decodable "books" used in phonics-heavy reading instruction. These are not engaging and motivating. They are usually not relevant to the students' lives because their goal is to include words that can be decoded based on the lesson. Decodability is often at the expense of authentic meaning to the child. Reading becomes tedious and, for some children, confusing and anxiety-provoking. In this state, there is reduced passage of information through the neural pathways from the amygdala to higher cognitive centers of the brain, including the prefrontal cortex, where information is processed, associated, and stored for later retrieval and executive functioning.
Additional neuroimaging studies of the amygdala, hippocampus, and the rest of the limbic system, along with measurement of dopamine and other brain chemical transmitters during the learning process, reveal that students' comfort level has critical impact on information transmission and storage in the brain. The factors that have been found to affect this comfort level such as self-confidence, trust and positive feelings for teachers, and supportive classroom and school communities are directly related to the state of mind compatible with the most successful learning, remembering, and higher-order thinking.
The Power of Joyful Learning
The highest-level executive thinking, making connections, and "ah-ha" moments of insight and creative innovation are more likely to occur in an atmosphere of what Alfie Kohn calls exuberant discovery, where students of all ages retain that kindergarten enthusiasm of embracing each day with the joy of learning.
With current research and data in the field of neuroscience, we see growing opportunities to coordinate the design of curriculum, instruction, and assessment in ways that will reflect these incredible discoveries.
Joy and enthusiasm are absolutely essential for learning to happen -- literally, scientifically, as a matter of fact and research. Shouldn't it be our challenge and opportunity to design learning that embraces these ingredients?
Judy Willis contributed these thoughts in an article in Edutopia in July 2014.